11,460 research outputs found

    A Parsing Scheme for Finding the Design Pattern and Reducing the Development Cost of Reusable Object Oriented Software

    Full text link
    Because of the importance of object oriented methodologies, the research in developing new measure for object oriented system development is getting increased focus. The most of the metrics need to find the interactions between the objects and modules for developing necessary metric and an influential software measure that is attracting the software developers, designers and researchers. In this paper a new interactions are defined for object oriented system. Using these interactions, a parser is developed to analyze the existing architecture of the software. Within the design model, it is necessary for design classes to collaborate with one another. However, collaboration should be kept to an acceptable minimum i.e. better designing practice will introduce low coupling. If a design model is highly coupled, the system is difficult to implement, to test and to maintain overtime. In case of enhancing software, we need to introduce or remove module and in that case coupling is the most important factor to be considered because unnecessary coupling may make the system unstable and may cause reduction in the system's performance. So coupling is thought to be a desirable goal in software construction, leading to better values for external software qualities such as maintainability, reusability and so on. To test this hypothesis, a good measure of class coupling is needed. In this paper, based on the developed tool called Design Analyzer we propose a methodology to reuse an existing system with the objective of enhancing an existing Object oriented system keeping the coupling as low as possible.Comment: 15 page

    Quantifying human mobility resilience to extreme events using geo-located social media data

    No full text

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Towards the Formal Reliability Analysis of Oil and Gas Pipelines

    Get PDF
    It is customary to assess the reliability of underground oil and gas pipelines in the presence of excessive loading and corrosion effects to ensure a leak-free transport of hazardous materials. The main idea behind this reliability analysis is to model the given pipeline system as a Reliability Block Diagram (RBD) of segments such that the reliability of an individual pipeline segment can be represented by a random variable. Traditionally, computer simulation is used to perform this reliability analysis but it provides approximate results and requires an enormous amount of CPU time for attaining reasonable estimates. Due to its approximate nature, simulation is not very suitable for analyzing safety-critical systems like oil and gas pipelines, where even minor analysis flaws may result in catastrophic consequences. As an accurate alternative, we propose to use a higher-order-logic theorem prover (HOL) for the reliability analysis of pipelines. As a first step towards this idea, this paper provides a higher-order-logic formalization of reliability and the series RBD using the HOL theorem prover. For illustration, we present the formal analysis of a simple pipeline that can be modeled as a series RBD of segments with exponentially distributed failure times.Comment: 15 page

    Direct simulation for a homogenous gas

    Full text link
    A probabilistic analysis of the direct simulation of a homogeneous gas is given. A hierarchy of equations similar to the BBGKY hierarchy for the reduced probability densities is derived. By invoking the molecular chaos assumption, an equation similar to the Boltzmann equation for the single particle probability density and the corresponding H-theorem is derived
    • …
    corecore